Analyse raw ion count data
stat_X.Rd
stat_X
function for descriptive and predictive statistics on single
ion precision.
stat_R
function for descriptive and predictive statistics on isotope
ratios (R) precision with appropriate error propagation.
Usage
stat_X(
.IC,
...,
.X = NULL,
.N = NULL,
.species = NULL,
.t = NULL,
.stat = point::names_stat_X$name,
.label = "none",
.meta = FALSE,
.output = "sum"
)
stat_R(
.IC,
.ion1,
.ion2,
...,
.nest = NULL,
.X = NULL,
.N = NULL,
.species = NULL,
.t = NULL,
.stat = point::names_stat_R$name,
.label = "none",
.output = "sum",
.zero = FALSE
)
Arguments
- .IC
A tibble containing processed ion count data.
- ...
Variables for grouping.
- .X
A variable constituting the ion count rate (defaults to variables generated with
read_IC()
.)- .N
A variable constituting the ion counts (defaults to variables generated with
read_IC()
.).- .species
A variable constituting the species analysed (defaults to variables generated with
read_IC()
.).- .t
A variable constituting the time of the analyses (defaults to variables generated with
read_IC()
.).- .stat
Select statistics (e.g.
c("M", "RS"
), see the tablespoint::names_stat_X
andpoint::names_stat_R
for the full selection of statistics available (default uses all statistic transformations).- .label
A character string indicating whether variable names are latex (
"latex"
) or webtex ("webtex"
) compatible. Will be extended in the futuredefault = NULL
.- .meta
Logical whether to preserve the metadata as an attribute (defaults to TRUE).
- .output
A character string for output as summary statistics ("sum"); statistics only ("stat"); and statistics with the original data ("complete")
default = "sum"
.- .ion1
A character string constituting the heavy isotope ("13C").
- .ion2
A character string constituting the light isotope ("12C").
- .nest
A variable hat identifies a series of analyses to calculate external precision.
- .zero
A character string that determines whether analyses with zero count measurements will be removed from the calculations.
Value
A tibble::tibble
containing descriptive
and predictive statistics for ion counts and isotope ratios. The naming
convention depends on the argument latex
; if set to FALSE
,
variable names concerning statistics will consist of an abbreviation pasted
together with the input variable names of Xt
.
Details
These functions are a convenient wrapper to calculate the statistics
pertaining to the precision of pulsed ion count data (e.g. secondary ion mass
spectrometry). The statistics can either be calculated for single ions or
isotope ratios, and include observed and predicted (Poisson) statistics.
Calculations for isotope ratios include proper error propagation. For more
information on the usage as well as the mathematics behind these
functions see vignette("IC-precision", package = "point")
.
Examples
# Use point_example() to access the examples bundled with this package
# raw data containing 13C and 12C counts on carbonate
tb_rw <- read_IC(point_example("2018-01-19-GLENDON"), meta = TRUE)
# Processing raw ion count data
tb_pr <- cor_IC(tb_rw)
# Single ion descriptive an predictive statistics for all measured ions
stat_X(tb_pr, file.nm)
#> # A tibble: 21 × 12
#> file.nm species.nm n_t.nm tot_N.pr M_Xt.pr S_Xt.pr RS_Xt.pr SeM_Xt.pr
#> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2018-01-19-GLE… 12C 3900 41718475 3.06e4 2738. 8.94 43.8
#> 2 2018-01-19-GLE… 12C13C 3900 15254 1.12e1 9.17 81.9 0.147
#> 3 2018-01-19-GLE… 12C14N 3900 511093 3.75e2 220. 58.7 3.53
#> 4 2018-01-19-GLE… 12C2 3900 686187 5.04e2 341. 67.7 5.46
#> 5 2018-01-19-GLE… 13C 3900 458139 3.36e2 42.5 12.6 0.680
#> 6 2018-01-19-GLE… 13C14N 3900 9158 6.72e0 5.63 83.8 0.0902
#> 7 2018-01-19-GLE… 40Ca16O 3900 18082538 1.33e4 1856. 14.0 29.7
#> 8 2018-01-19-GLE… 12C 3900 72956119 5.35e4 4073. 7.61 65.2
#> 9 2018-01-19-GLE… 12C13C 3900 10786 7.92e0 7.48 94.4 0.120
#> 10 2018-01-19-GLE… 12C14N 3900 362709 2.66e2 114. 42.9 1.83
#> # … with 11 more rows, and 4 more variables: hat_S_N.pr <dbl>,
#> # hat_RS_N.pr <dbl>, hat_SeM_N.pr <dbl>, chi2_N.pr <dbl>
# Descriptive an predictive statistics for 13C/12C ratios
stat_R(tb_pr, "13C", "12C", file.nm, .zero = TRUE)
#> # A tibble: 3 × 13
#> file.nm n_R_t.nm M_R_Xt.pr S_R_Xt.pr RS_R_Xt.pr SeM_R_Xt.pr RSeM_R_Xt.pr
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2018-01-19-G… 3900 0.0110 0.00102 93.0 0.0000163 1.49
#> 2 2018-01-19-G… 3900 0.0110 0.000779 70.8 0.0000125 1.13
#> 3 2018-01-19-G… 3900 0.0110 0.000733 66.5 0.0000117 1.06
#> # … with 6 more variables: hat_S_R_N.pr <dbl>, hat_RS_R_N.pr <dbl>,
#> # hat_SeM_R_N.pr <dbl>, hat_RSeM_R_N.pr <dbl>, chi2_R_N.pr <dbl>,
#> # ratio.nm <chr>
# Descriptive an predictive statistics for 13C/12C ratios (external)
stat_R(tb_pr, "13C", "12C", sample.nm, file.nm, .nest = file.nm,
.zero = TRUE)
#> # A tibble: 1 × 13
#> sample.nm n_R_t.nm M_R_M_Xt.pr S_R_M_Xt.pr RS_R_M_Xt.pr SeM_R_M_Xt.pr
#> <chr> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 Belemnite,Indium 3 0.0110 0.0000203 1.85 0.0000117
#> # … with 7 more variables: RSeM_R_M_Xt.pr <dbl>, hat_S_R_tot_N.pr <dbl>,
#> # hat_RS_R_tot_N.pr <dbl>, hat_SeM_R_tot_N.pr <dbl>,
#> # hat_RSeM_R_tot_N.pr <dbl>, chi2_R_tot_N.pr <dbl>, ratio.nm <chr>